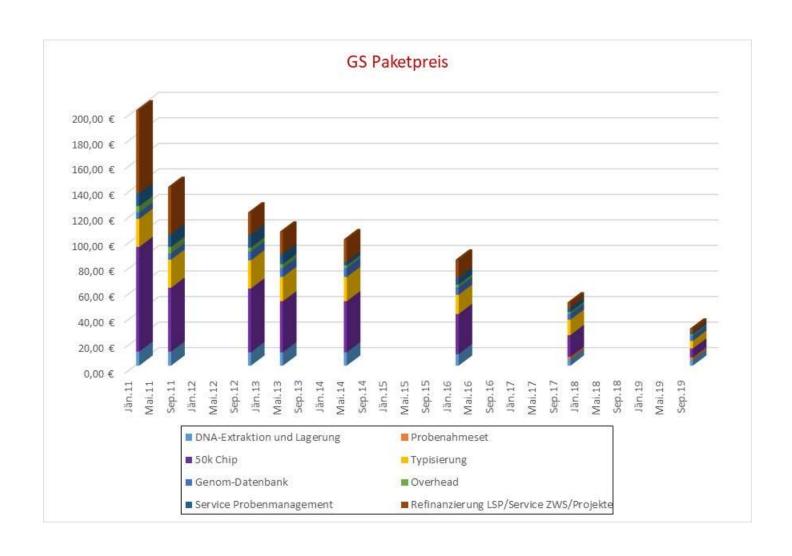


Genomik in der Rinderzucht für bessere Tiergesundheit

Dr. Hermann Schwarzenbacher, Dr. Christian Fürst ZuchtData GmbH

Salzburger Managementprofi 2019 Pfarrwerfen, am 29. Jänner 2020


SNP Chips haben die

Rinderzucht verändert!

Entwicklung der Genotypisierungspreise Zucht Data

Inhalt

- 1) Herdengenotypisierung
 - Projekt FoKUHs

- 2) Prinzip genomische ZWS
 - Neues Verfahren: Single-Step ZWS

3) Was bringt die Herdentypisierung am Betrieb?

Teil 1 Herdengenotypisierung

Herdengenotypisierung

- Genotypisierung von weiblichen Tieren für Züchter zunehmend interessant
 - Innerbetrieblichen Selektion
 - Kosten Bestandesergänzung reduzieren
 - Gezielte Paarung und betriebsspezifische Zuchtziele
- Kuhtypisierung **besonders wichtig** bei Merkmalen die erst seit kurzer Zeit erhoben werden **Gesundheitsmerkmale**
 - Lernstichprobe über geprüfte Stiere: 10 bis 15 Jahre
 - Über Kuhtypisierung grundsätzlich innerhalb weniger Jahre möglich

- Typisierung weiblicher Tiere ist heute strategischer Faktor im Wettbewerb der Rassen
 - Stand in den USA
 - 2,43 Mio Genotypen total, 91% weiblich
 - 10.000-20.000 Neutypisierungen pro Woche
 - >400.000 Kühe in Lernstichprobe Milch
- Projekte zur systematischen Geno- und Phänotypisierung von weiblichen Tieren in vielen Ländern
- Das Ziel ist Aufbau einer Kuhlernstichprobe, häufig Schwerpunkt auf Gesundheitsmerkmale

Förderung / Finanzierung

,BLÜM': Sonderrichtlinie zur Förderung der Land- und Forstwirtschaft aus nationalen Mitteln

Eckpunkte

- 5 Jahre Laufzeit
- Förderquote 62,5%
- Bund 60%, Länder 40%
- Eigenmittel:
 - Beitrag Zuchtorganisationen
 - Beitrag Züchter

FoKUHs Projektziele

- → Genomische Zuchtwerte für Gesundheitsmerkmale und Klauengesundheit
- → Erhöhung der Sicherheiten für genomische Zuchtwerte
- → Erwartungstreue Genomzuchtwerte

FoKUHs Projektstruktur

Projektmanagement

Genotypisierung

Phänotypisierung Zuchtwertschätzung Managementtools

Phänotypisierung

Phänotypen im Projekt (gesamte Laufzeit!)

- Abstammung + Standardmerkmale
- Valide <u>Gesundheitsdaten</u>erfassung (auf Basis von tierärztlichen Diagnosen, egal wer erfasst)
- <u>Lineare Beschreibung</u> aller Erstlaktierenden durch den ZVB
- <u>Stoffwechsel</u> (2 x Ketotest bei Erstlaktierenden, RDV-Eingabe LKV)
- <u>Klauengesundheit</u> Klauenpflegedaten von allen Kühen

Genotypisierungszahlen

Juli 2018

Dezember 2019

geno_Illumina_K50_V2 54609 51775 2827 geno_Illumina_K50_CustV2 56715 33092 1876 geno_Illumina_K50_CustV2 56715 33092 1876 geno_Illumina_K50_CustV2 56715 33091 1876 geno_Illumina_K50_CustV1 56263 15692 882 geno_Illumina_K50_CustV3 56460 21750 1228 geno_Illumina_K50_CustV4 46691 15262 712 geno_Illumina_K50_CustV4 56263 15692 882 geno_Illumina_K50_CustV4 56263 15691 882 geno_Illumina_K50_CustV3 45994 14547 669 geno_Illumina_K50_V1A 54001 6301 340 geno_Illumina_K50_V1A 54001 6301 340 geno_Illumina_K80GGPHD 76879 2975 228 geno_Illumina_K50_V1B 54001 4160 224 geno_Illumina_K50_V2_FRA 54609 682 37 geno_Illumina_K50_V3_FRA 53218 944 5 geno_Illumina_K50_V3_FRA 53218 213 11 70tal 7	Panel	InSNP	lnSample	SNP(mio)	Pane I	nSNP	nSamp le	SNP(m10)	!
	geno_Illumina_K50_CustV2 geno_Illumina_HD geno_Illumina_K50_CustV1 geno_Illumina_K50_CustV4 geno_Illumina_K50_CustV3 geno_Illumina_K50_V1A geno_Illumina_K80GGPHD geno_Illumina_K50_V2_FRA geno_Illumina_K50_V3_FRA	56715 777962 56263 46691 45994 54001 76879 54001 54609 53218	51775 33092 1254 15692 15262 14547 6301 2975 4160 682	1876 975 882 712 669 340 228 224 37 5	geno_Illumina_K50_V2 geno_Illumina_K50_CustV2 geno_Illumina_K50_CustV5	54609 56715 56460 777962 56263 45994 54001 76879 54001 53218 54609 5321	51775 33091 21750 1254 15691 14547 6301 2975 4160 962 682 213	2827 1876 1228 975 882 669 340 228 224 51 37	

74% Datenzuwachs in letzten 1 1/2 Jahren

Entwicklung der Erfassung der Phänotypen (Stand 01/2020)

- 21.469 Genotypisierungen
- 8.800 LBEs von Erstlaktierenden
- 403 Betriebe mit validen GMON Daten
- 13.391 Klauenpflegeaufzeichnung von Tieren
- 5.355 Ketotests von Kühen am Tag 7
- 5.203 Ketotests von Kühen am Tag 14

Herdentypisierung

Übersicht über laufende Projekte in AT und DEU

Projekt	<u>FoKUHs</u>	braunvieh vision	Fl e ck fficient	KUHVISION
Land	Österreich	Bayern, Baden-	Baden-	Deutschland
		Württemberg	Württemberg	(incl. AT)
Laufzeit	01.18-12.22	07.17-06.20	01.19-12.21	06.16-09.20
Anzahl	463	182	200	1.250
Betriebe	346-FV	(Stand 02.19)		(Stand 01.19,
	57-BV			incl.Herdentypisierung
	60-HF (Teiln. an Kuhvision)			
Rassen	FV, BV, HF	BV	FV	HF
Anzahl Geno-	35.000 (FV)	38.000	20.000	Ziel 250.000
typisierungen	5.500 (BV)			aktuell>300.000
	5.500 (HF)			(Stand 01.19)

FLEQS, Bayern, 3 Jahre Laufzeit, total 80.000 FV Typisierungen

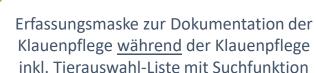
- Bullenmodell: 50 Töchter / KB Stier (15000Toe/Jahr), Exterieurbeschreibung
- Herdenmodell: Ziel 300 Betriebe, Gesundheitsdaten, Klauenpflegedaten, Verhalten

Herdentypisierung

Übersicht über laufende Projekte in AT und DEU

		(P		
Projekt	FoKUHs	braunvieh vision	Fl e ck fficient	KUHVISION
Erfasste Phänotypen	Ein Programm für alle	Ein Programm für alle	Mehrere Programme: Basis, Premium, Premium+	Mehrere Programme: Basis, Basis+,Basis++
	Standardmerkmale	Standardmerkmale	Standardmerkmale	Standardmerkmale
r	Gesundheitsdaten über GMON als tierärztl. Diagnosen	Gesundheitsdaten über ProGesund und GMON als Diagnosen und Be- obachtungen; Kälberer- krankungen incl. Trink-	GMON; Kälbererkrankun- gen incl.Trinkschwäche	Gesundheitsdaten über GMON;
	Stoffwechsel (Ketotests)	schwäche	Verhalten: (Saugverhal- ten, Melkverhalten, Kuh- charakter)	
			Legendgewichte und Körpermaße	
	Klauenpflegedaten		Klauenpflegedaten	Klauenpflegedaten
	lineare Beschreibung	lineare Beschreibung	lineare Beschreibung	lineare Beschreibung

Neuerung I: App zur Erfassung von Klauenpflegedaten (Einführung ab 06/2020)

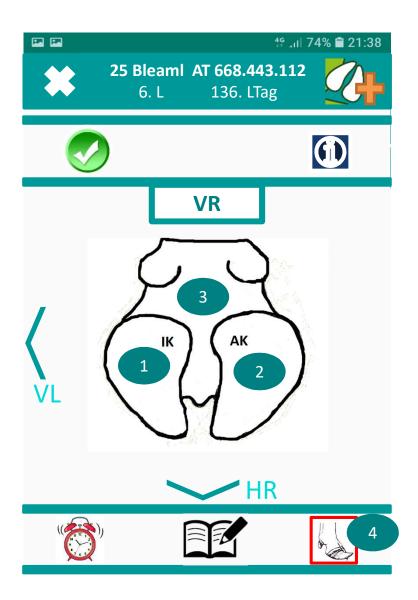

Auswertungen
Analysieren Sie mit Hilfe von

Dokumentation

Die Klauengesundheit der Herde im Blick

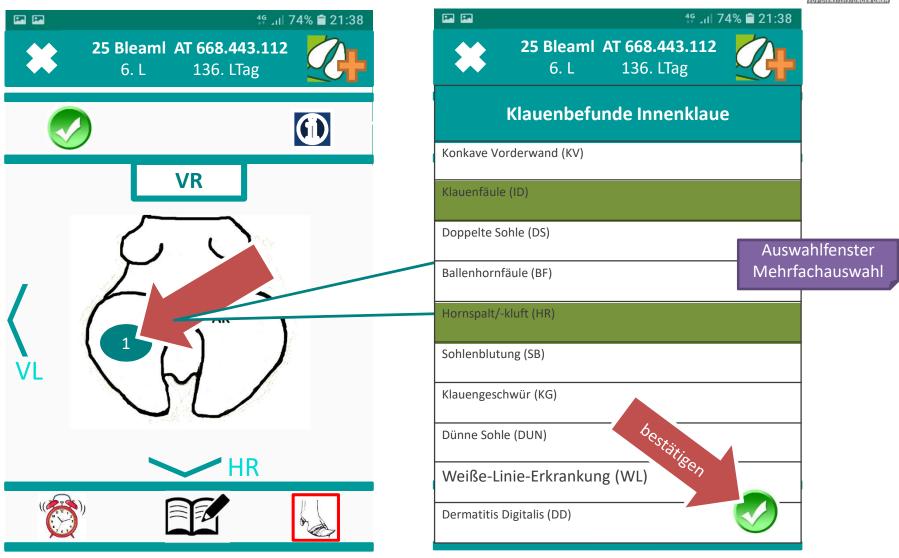
Auswertungen, die Ergebnisse der

Einstellungen


Auswertungen/Übersichtslisten gefüttert mit brandaktuellen und historischen Klauenpflegedaten

Übersicht über die in der Erfassungsmaske erhobenen Notizen – Termine, Klauenverband, Stöckel, Nachkontrolle, Tierarzt, individuelle Notiz

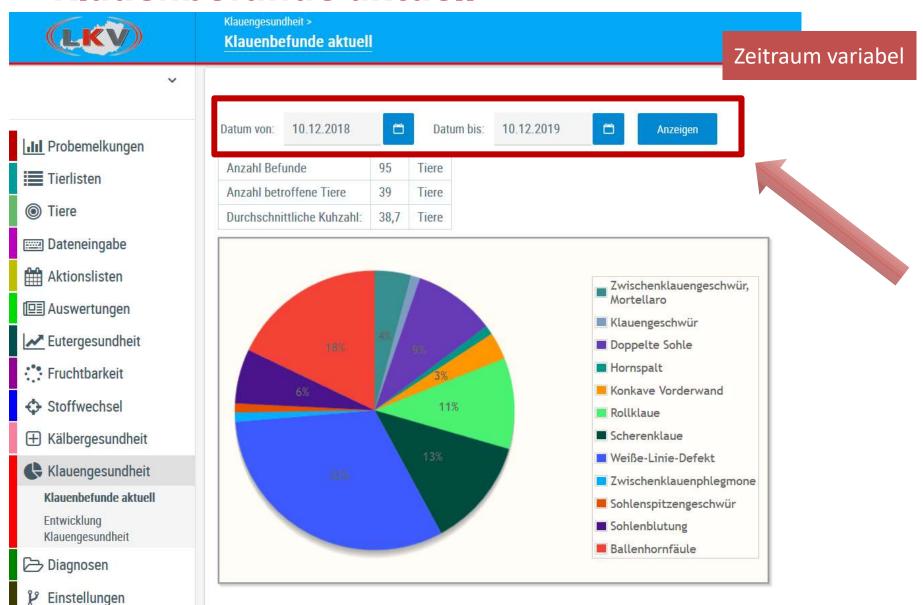
Auswertungen je Klauenpflegedatum



Erfassung Klauenbefunde

4 mögliche Klauenzonen:

- 1. Innenklaue
- 2. Außenklaue
- 3. Zwischenklauenspalt + Kronsaum + Haut ober Weichballen
- 4. Besonderheiten



Neuerung: Klauengesundheit im LKV Herdenmanager

Klauenbefunde aktuell

Klauenbefunde aktuell

Aktionslisten

Auswertungen

Eutergesundheit

:: Fruchtbarkeit

Stoffwechsel

Klauengesundheit

Klauenbefunde aktuell

Entwicklung Klauengesundheit

Diagnosen

& Einstellungen

Klauenbefu	nde im Zeitraur	n		
Befunde	Anzahl Befunde	Anzahl Tiere	Anteil betroffene Tiere (%)	
Zwischenklauengeschwür, Mortellaro	4	4	10,3	
Klauengeschwür	1	1	2,6	
Doppelte Sohle	9	9	23,1	
Hornspalt	1	1	2,6	
Konkave Vorderwand	3	3	77	
Rollklaue	10	10	betroffene Ti aufrufen	iere
Scherenklaue	12	11	aunuien 20,2	
Weiße-Linie-Defekt	30	28	71,8	
Zwischenklauenphlegmone	1	1	2,6	
Sohlenspitzengeschwür	1	1	2,6	
Sohlenblutung	6	6	15,4	
Ballenhornfäule	17	17	43,6	

Teil 2 genomische Zuchtwertschätzung

Verwandte Tiere sind sich ähnlicher!

- Grad der Verwandtschaft: Verwandtschaftskoeffizient
- **Erblichkeitsgrad**: umso höher, desto mehr Info in einer Leistungsinformation über Genetik

Was macht die ZWS?

- nutzt gesamte verfügbare Leistungsinfo
 - Erblichkeit geschätzt in vorgelagerten Studien
- paarweise Anteile gleicher Gene für alle Tiere in der ZWS
 - über Pedigree abgeleitet → "Verwandtschaftsmatrix"
 - sind Durchschnittswerte
- wechselseitige Abhängigkeiten
 - daher ZW für alle Tiere gleichzeitig geschätzt

Prinzip genomische ZWS

Erweiterung der konventionellen ZWS

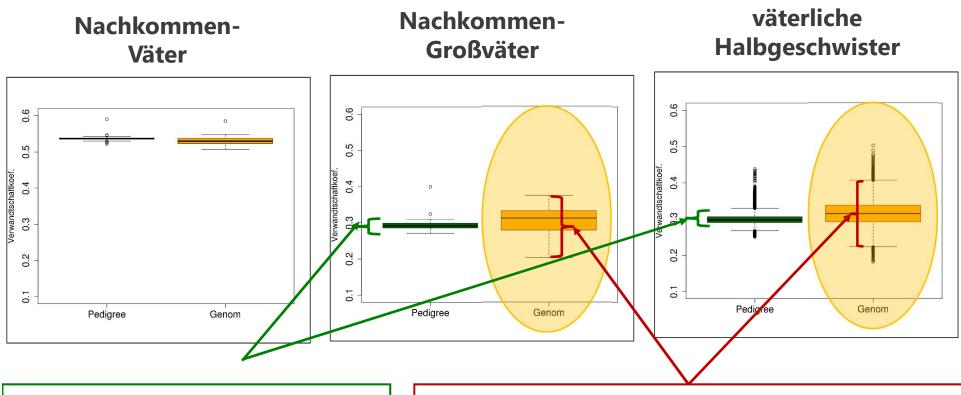
- genomweite Genotypisierung aller Tiere mit je 40.000 SNP Marker über SNP Chips
- erlaubt genaue Schätzung der Verwandtschaft zwischen Tieren

konventionelle ZWS

paarweise Anteile gleicher Gene für alle Tiere in der **ZWS**

- über **Pedigree** abgeleitet
 → "Verwandtschaftsmatrix"
- sind Durchschnittswerte

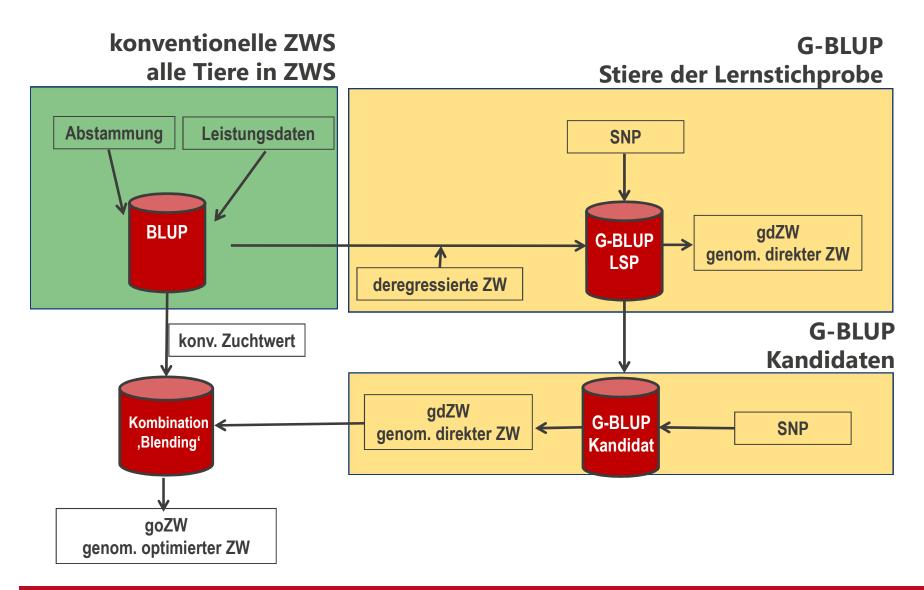
genomische ZWS: "G-BLUP"


paarweise Anteile gleicher Gene für alle Tiere in der **gZWS**

- über SNP Marker abgeleitet
 → "genom. Verwandtschaftsmatrix"
- sind exakte Werte

Prinzip genomische ZWS

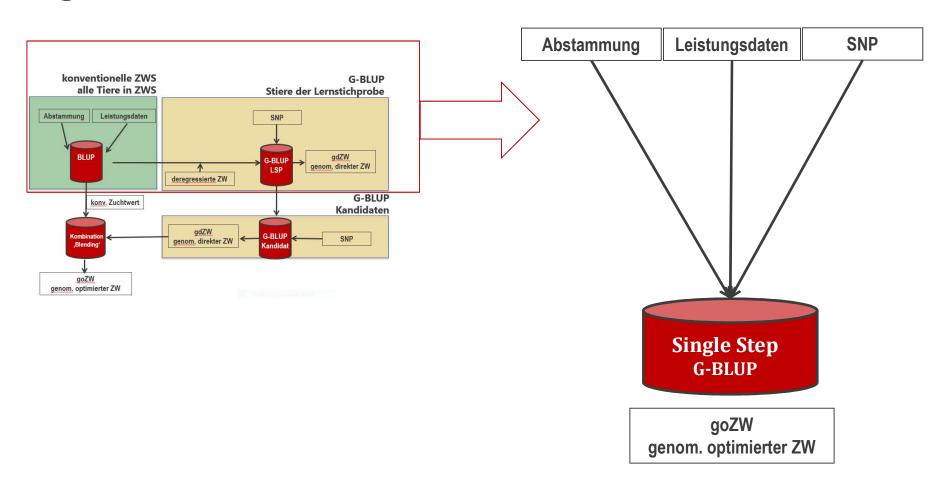
Verwandtschaftskoeffizienten aus konventioneller und genomischer ZWS (Fleckvieh, Dez. 2018).



BLUP: Durchschnittswerte aus Pedigree

G BLUP: wahre Verwandtschaft, daher auch mehr Streuung

Zum genom. Zuchtwert in 2 Stufen



NEU: Single Step ZWS

Legarra und Misztal, 2009: Zusammenführung konv. und genom. ZWS in ein Verfahren

Herzstück: Kombination von genomischer und abstammungsbasierter Verwandtschaft

- Genominfo ins Pedigree ,zurückgerechnet'
 - Sehr geringe Auswirkung auf entfernte Vorfahren
 - Große Auswirkung auf junge Tiere ohne Genotyp
 - Informationszugewinn wenn diese mit Leistung

Nutzen aus neuem Verfahren

- Berücksichtigung von genomischer Vorselektion
- Alle Tiere mit Leistung tragen zur Schätzung bei
- Daher optimal zur Einbeziehung von Daten aus Herdentypisierungsprojekten in Genomik

Einführung Aug. 2019 bei Exterieur im Fleckvieh!

Teil 3 Was bringt die Typisierung am Betrieb?

Teil 3.1 Was taugen die Genomzuchtwerte?

Dr. Christian Fürst, ZuchtData, Wien

Verwendung von Daten des ZWS-Teams Deutschland-Österreich-Tschechien, insbesondere von Dr. Reiner Emmerling und Dr. Dieter Krogmeier, LfL Grub

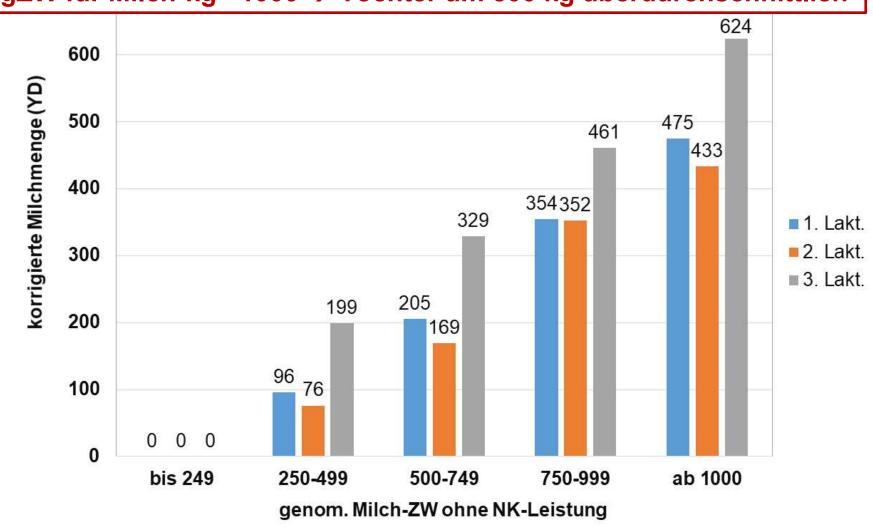
Auswertung 1: Milch

STIERE:

Genomischer Zuchtwert und Töchterleistung

Daten:

- Fleckvieh-Stiere, die im Apr. 16 noch ein genom. Jungvererber
 (GJV) waren (Si.GZW ≤70%) und im Aug. 19 Nachkommen-geprüft
 (NK, Si.GZW ≥80%)
- n=1.063


Frage:

 wie ist die Milchleistung der Töchter in Abhängigkeit vom genom. ZW der Väter als GJV?

ausgedrückt als umwelt- und anpaarungskorrigierte Milchleistung (daughter yield deviation = DYD)

Zusammenhang zw. gZW als GJV und MILCHLEISTUNG der Töchter beim Fleckvieh

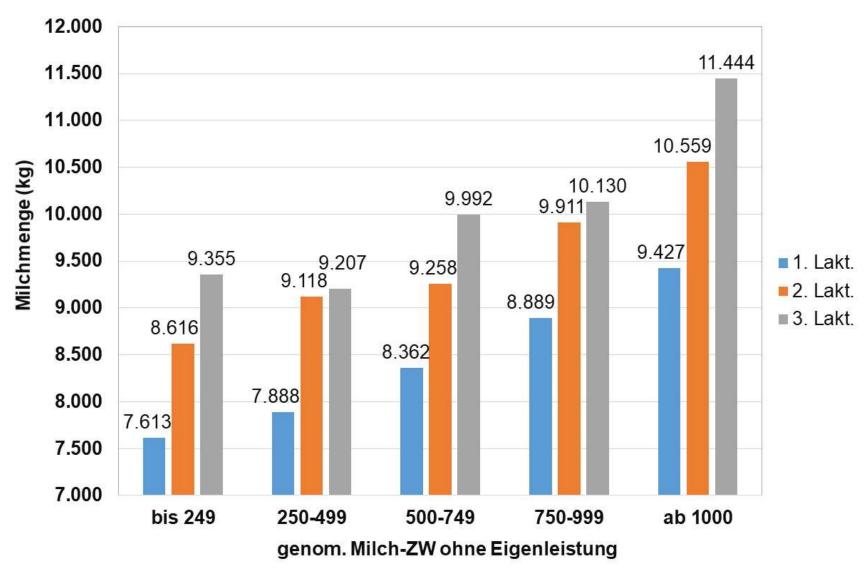
gZW für Milch-kg +1000 → Töchter um 500 kg überdurchschnittlich

Auswertung 1: Milch

KÜHE:

Genomischer Zuchtwert und Eigenleistung

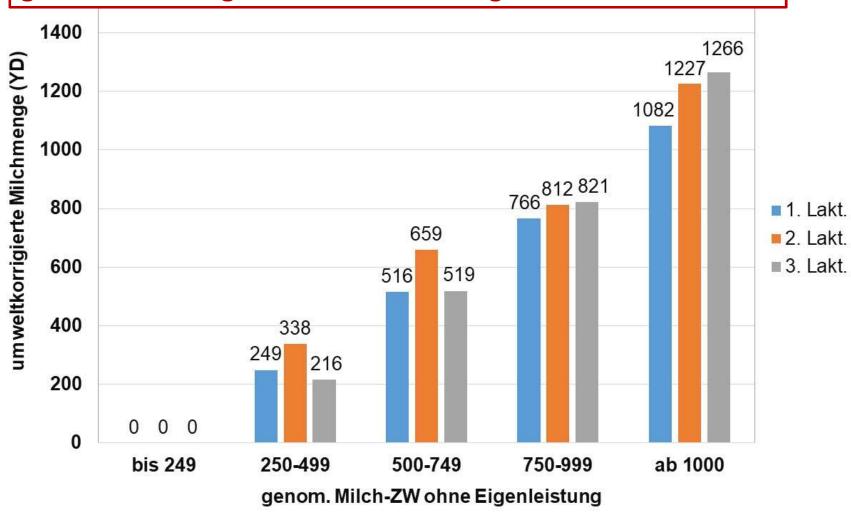
Daten:


- weibliche Fleckvieh-Jungtiere, die im Apr. 16 einen genom. ZW hatten (ohne Eigenleistung) und jetzt mind. 6 Probemelkergebnisse
- n=3.450/2.468/747

Frage:

 wie ist die spätere Milchleistung in Abhängigkeit vom genom. Milch-ZW als Kalb/Kalbin?

absolut (Ö) und als umweltkorrigierte Milchleistung (yield deviation = YD)


Zusammenhang zw. gZW als Kalbin und MILCHLEISTUNG als Kuh beim Fleckvieh (Stdlakt.)

Zusammenhang zw. gZW als Kalbin und MILCHLEISTUNG als Kuh beim Fleckvieh (YD)

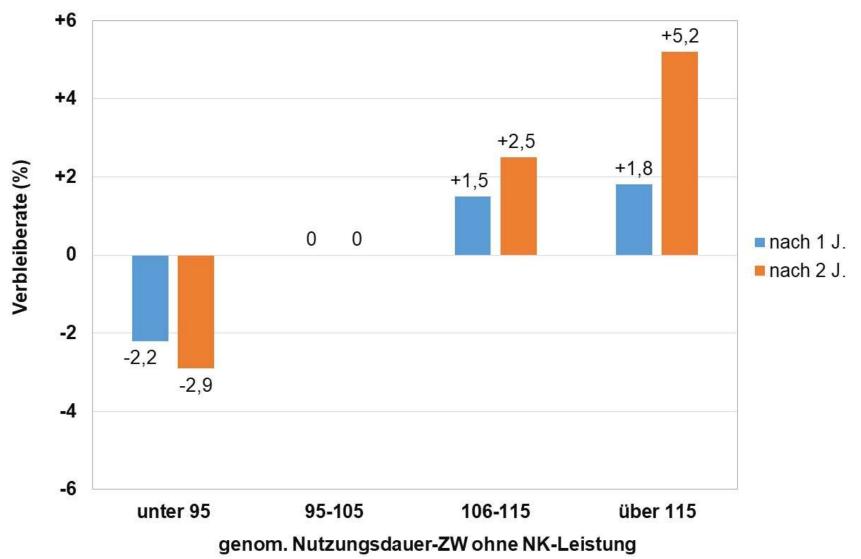
gZW für Milch-kg +1000 → um 1000 kg überdurchschnittlich

Auswertung 2: Nutzungsdauer

STIERE:

Genomischer Zuchtwert und Töchterleistung

Daten:


- Fleckvieh-Stiere, die im Apr. 16 noch ein genom. Jungvererber (GJV) waren (Si.GZW ≤70%) und im Aug. 19 Nachkommen-geprüft (NK, Si.GZW ≥80%)
- mind, 10 Töchter
- n=887

Frage:

 wie ist die Verbleiberate der Töchter in Abhängigkeit vom genom. ZW für (leistungsunabhängige) Nutzungsdauer der Väter als GJV?

rein phänotypisch (keine Korrekturen)

Zusammenhang zw. gZW als GJV und NUTZUNGSDAUER der Töchter beim Fleckvieh

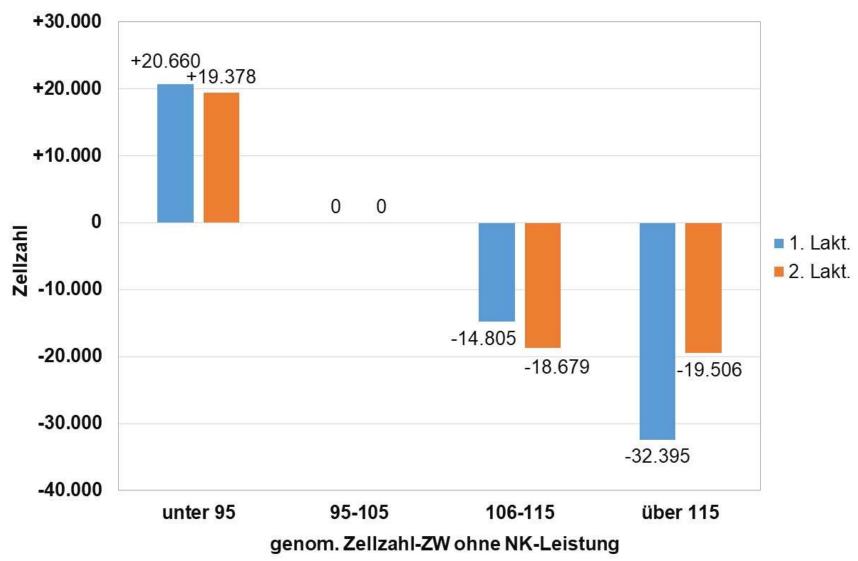
Auswertung 3: Zellzahl

STIERE:

Genomischer Zuchtwert und Töchterleistung

Daten:

- Fleckvieh-Stiere, die im Apr. 16 noch ein genom. Jungvererber (GJV) waren (Si.GZW ≤70%) und im Aug. 19 Nachkommen-geprüft (NK, Si.GZW ≥80%)
- mind. 20 Töchter (nur österr. Daten)
- n=278/169


Frage:

 wie ist die Zellzahl der Töchter in Abhängigkeit vom genom. ZW für Zellzahl der Väter als GJV?

rein phänotypisch (keine Korrekturen)

Zusammenhang zw. gZW als GJV und ZELLZAHL der Töchter beim Fleckvieh

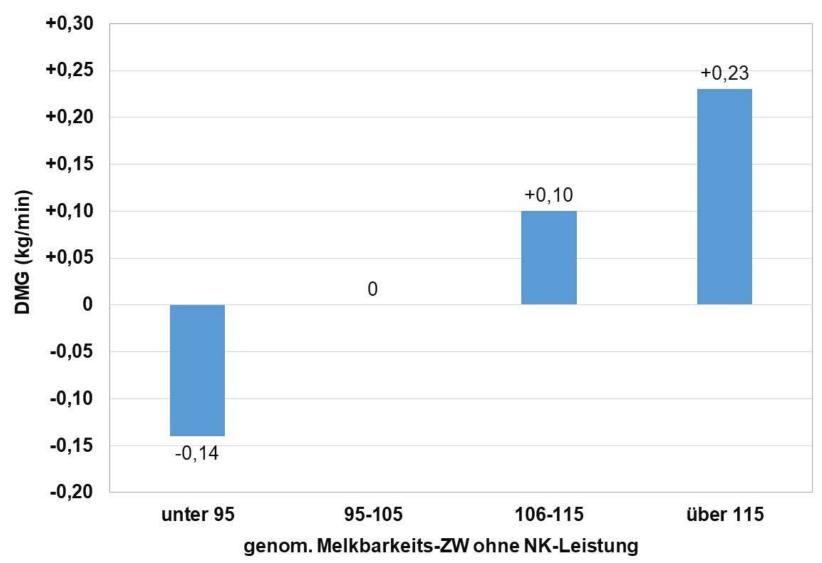
Auswertung 4: Melkbarkeit

STIERE:

Genomischer Zuchtwert und Töchterleistung

Daten:

- Fleckvieh-Stiere, die im Apr. 16 noch ein genom. Jungvererber (GJV) waren (Si.GZW ≤70%) und im Aug. 19 Nachkommen-geprüft (NK, Si.GZW ≥80%)
- mind. 10 Töchter (DMG AT/BW)
- n=374


Frage:

 wie ist das DMG der Töchter in Abhängigkeit vom genom. ZW für Melkbarkeit der Väter als GJV?

rein phänotypisch (keine Korrekturen)

Zusammenhang zw. gZW als GJV und DMG der Töchter beim Fleckvieh

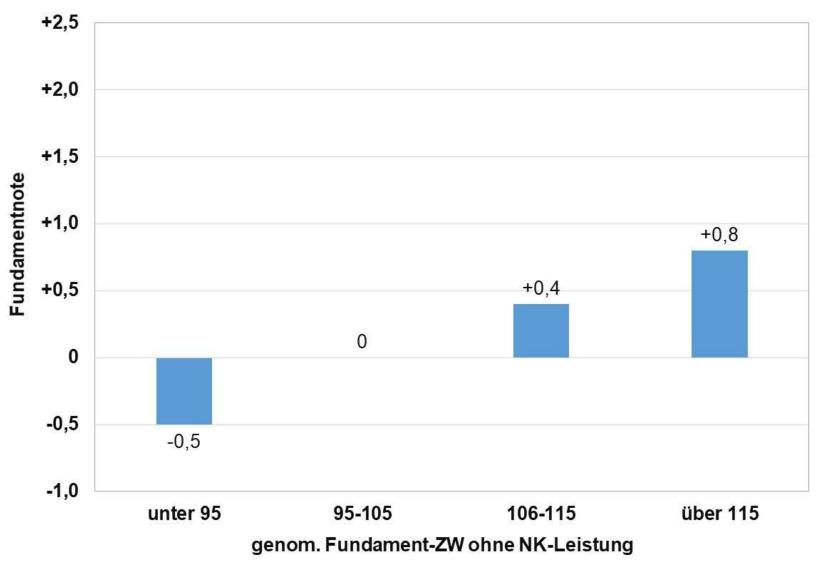
Auswertung 5: Exterieur

STIERE:

Genomischer Zuchtwert und Töchterleistung

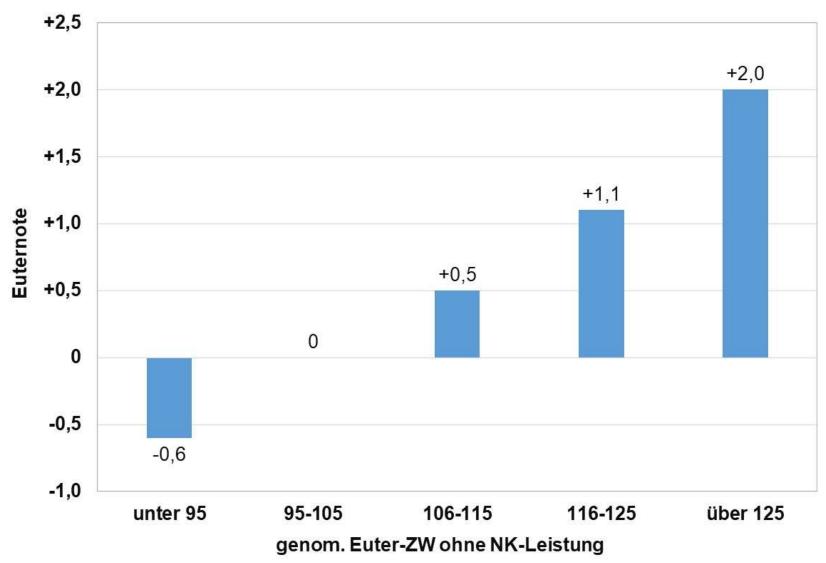
Daten:

- Fleckvieh-Stiere, die im Apr. 16 noch ein genom. Jungvererber (GJV) waren (Si.GZW ≤70%) und im Aug. 19 Nachkommen-geprüft (NK, Si.GZW ≥80%)
- mind, 20 Töchter mit LB
- n=1.063


Frage:

 wie ist das Exterieur der Töchter in Abhängigkeit vom genom. ZW für Exterieur der Väter als GJV?

umwelt- und anpaarungskorrigiert (daughter yield deviation = DYD)


Zusammenhang zw. gZW als GJV und FUNDAMENT der Töchter beim Fleckvieh

Zusammenhang zw. gZW als GJV und EUTER der Töchter beim Fleckvieh

Teil 3.2 Erbfehlermanagement und genetische Besonderheiten

• Fleckvieh:

•	Spinnengliedrigkeit (Arachnomelie):	Α	h
•	Zwergwuchs:	DW	g
•	Minderwuchs:	FH2	g
•	Zinkdefizienz-like Syndrom:	ZDL	g
•	Thrombopathie:	TP	g
•	Braunvieh-Haplotyp 2:	BH2	g
•	Bovine männl. Subfertilität:	BMS	g
•	Fleckvieh Haplotyp 4:	FH4	g
•	Fleckvieh Haplotyp 5:	FH5	g

Braunvieh:

•	Spinnengliedrigkeit (Arachnomelie):	Α	g
•	Weaver:	W	g
•	SMA:	M	g
•	SDM:	D	g
•	Braunvieh-Haplotyp 2:	BH2	g
	g = Gentest über Custom chip; h = Hapl	otypentest	

genetische Besonderheiten

Hornlosmutationen

friesische und keltische Variante

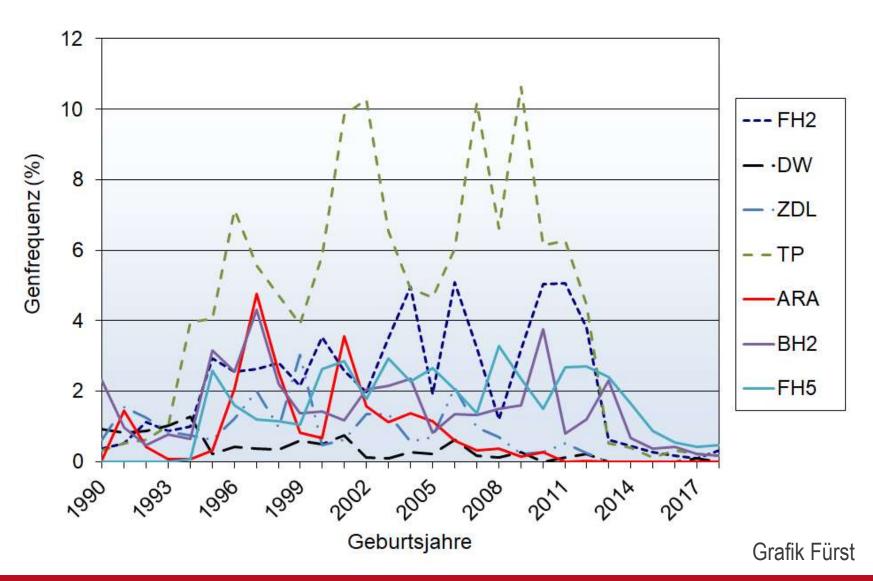
Milch Kasein Varianten:

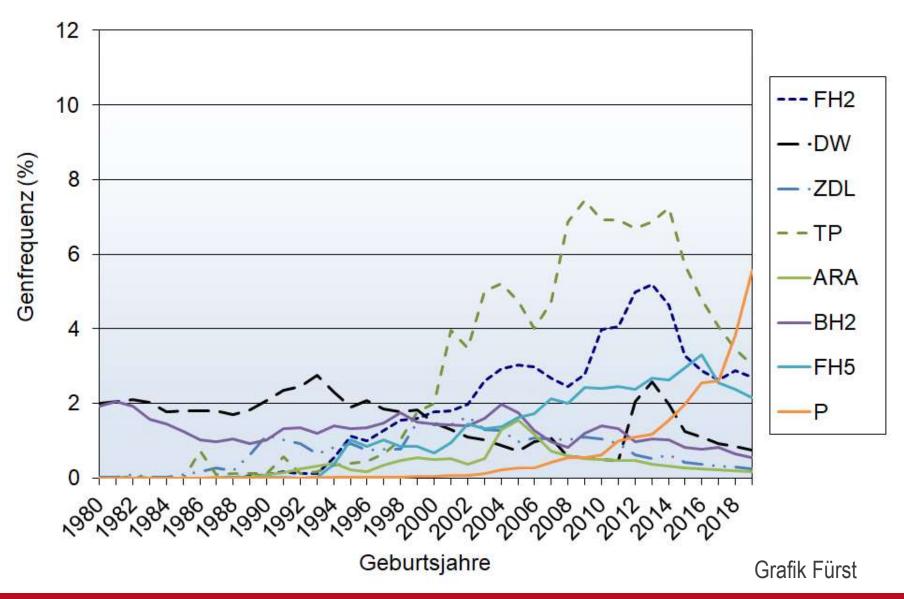
Beta Kasein A1/A2

incl. aller Subtypen

Kappa Kasein A/B

Monitoring für weitere genetische Varianten


ZAR Zuchtwertdatenbank (zar.at)


Genfrequenz Fleckvieh KB-Stiere

Genfrequenz Fleckvieh weiblich

Berücksichtigung der Erbfehler in OptiBull

	Stier	VV	VVV	VVVV
				VVVM
			VVM	VVMV
				VVMM
		VM	VMV	VMVV
				VMVM
			VMM	VMMV
I/alla				VMMM
Kalb		WINNIPEG FH2	MVV	MVVV
				MVVM
			MVM	MVMV
	DIDIZE			MVMM
	BIRKE	MM	MMV	MMVV
				MMVM
			MMM	RENAX TP
				MMMM

BIRKE	als Stiermutter vorgesehen	08.13
WILDWUCHS *TA	Kalb_1 FH2	100
SYMPOSIUM	Kalb_2	98,22
GS MOUNTEVER *TA	Kalb_3	96,43
HUMPERT *TA	Kalb_4	95,97
MAGISTRAT	Kalb_5	95,18
SILVERSTAR	Kalb_6 TP	94,67

Rot: Risiko von mind. 6,25% (mind. jedes 16. Kalb)

Gelb: Risiko 3,125 bis <6,25% (mind. jedes 32. Kalb)

Zusammenfassung

Für den langfristigen Erfolg entscheidend:

- **breite Genotypisierung** in den Betrieben
- Kosten-Nutzen Verhältnis am Betrieb
 - bessere Zuchtentscheidungen durch Genomik (Selektion, Paarung)
 - → Auswertungen zeigen klare Überlegenheit
 - mehr Betriebserfolg durch GS am Betrieb
 - Unterstützung durch neue Genomik-tools im RDV
 - **Einfacher Zugang zur GS** → Logistik Beantragung
 - Preiswerte Genomuntersuchung

Wir sind auf einem guten Weg!

Ohne (Gesundheits) Daten keine Zuchtwerte!

Das gilt insbesondere für die Genomische Selektion!

DANKE FÜR IHRE AUFMERKSAMKEIT!

Mit Unterstützung von Bund, Ländern und Europäischer Union

Bundesministerium Nachhaltigkeit und Tourismus

WIR DANKEN DEM BUNDESMINISTERIUM FÜR NACHHALTIGKEIT UND TOURISMUS UND DEN LÄNDERN FÜR DIE UNTERSTÜTZUNG VON FOKUHS!